Photoacoustic microscopy system for biological tissue imaging
نویسندگان
چکیده
Abstract A photoacoustic microscopy system was created and examined for biological tissue. Characterization of microphone, laser, motor stepper done to get the most appropriate setting system. The object table is set in a static state scanning process while radiation sources detector move X-Y direction. hardware components this consist signal generation components, mechanical detection components. are integrated controlled by computer through Raspberry-pi microcomputer software. characterization results image obtained optimum detecting tissue, namely frequency diode laser range 19 kHz with duty cycle 30%, minimum shift 0.2 mm. This can same tissue as original sample good contrast. smallest that be scanned 0.75 penetration depth 0.5
منابع مشابه
Single-wavelength functional photoacoustic microscopy in biological tissue.
Recently, we developed a reflection-mode relaxation photoacoustic microscope, based on saturation intensity, to measure picosecond relaxation times using a nanosecond laser. Here, using the different relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, the oxygen saturation was quantified in vivo with single-wavelength ...
متن کاملPhotoacoustic Microscopy in Tissue Engineering.
Photoacoustic tomography (PAT) is an attractive modality for noninvasive, volumetric imaging of scattering media such as biological tissues. By choosing the ultrasonic detection frequency, PAT enables scalable spatial resolution with desired imaging depth up to ~7 cm while maintaining a high depth-to-resolution ratio of ~200 and consistent optical absorption contrasts. Photoacoustic microscopy ...
متن کاملDeep reflection-mode photoacoustic imaging of biological tissue.
A reflection-mode photoacoustic (PA) imaging system was designed and built to image deep structures in biological tissues. We chose near-infrared laser pulses of 804-nm wavelength for PA excitation to achieve deep penetration. To minimize unwanted surface signals, we adopted dark-field ring-shaped illumination. This imaging system employing a 5-MHz spherically focused ultrasonic transducer prov...
متن کاملPhotoacoustic resonance spectroscopy for biological tissue characterization.
By "listening to photons," photoacoustics allows the probing of chromosomes in depth beyond the optical diffusion limit. Here we report the photoacoustic resonance effect induced by multiburst modulated laser illumination, which is theoretically modeled as a damped mass-string oscillator and a resistor-inductor-capacitor (RLC) circuit. Through sweeping the frequency of multiburst modulated lase...
متن کاملPhotoacoustic microscopy of bilirubin in tissue phantoms.
Determining both bilirubin's concentration and its spatial distribution are important in disease diagnosis. Here, for the first time, we applied quantitative multiwavelength photoacoustic microscopy (PAM) to detect bilirubin concentration and distribution simultaneously. By measuring tissue-mimicking phantoms with different bilirubin concentrations, we showed that the root-mean-square error of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of physics
سال: 2023
ISSN: ['0022-3700', '1747-3721', '0368-3508', '1747-3713']
DOI: https://doi.org/10.1088/1742-6596/2498/1/012016